Diagnosis and Classification of Sacral Fractures

Mohammed F. Shamji MD, PhD
VuMedi Webinar
Toronto Western Hospital – Spinal Neurosurgeon
University of Toronto – Assistant Professor
April 22, 2014

Learning outcomes

• By the end of this session, participants will be able to:

 • Optimal diagnostic tests to investigate sacral fractures
 • Classification schemes to describe sacral fractures
 • Biomechanics of stable and unstable sacral fractures

Sacrum

• Large triangular bone at the base of the lower spine, angled forward in the sagittal plane

• Name derived from Latin (sacrum) translated from Greek (hieron) = sacred or strong bone
 • Part of the animal offered in sacrificed
 • Belief that the soul of the man resides there

• Slavic languages and German (“the cross bone” – Kreuzbein) and in Dutch (“the holy bone” – Heiligbeen)
Sacral Anatomy – Osteology - I

- Formed by fusion of the 5 sacral vertebrae
 - Initially unfused, begin to fuse age 16-18 and completes at 34
 - Initially ~20° forward angulation, increases during adulthood

- The pelvic surface is concave
- The dorsal surface is convex
- The lateral surface is broad above and narrows below
- The broad base is directed upward and forward
- The tapered apex is directed downward

Sacral Anatomy – Osteology - II

- Articulations
 - Proximally – L5 vertebra
 - Distally – coccyx
 - Laterally – ilium

- The vertebral canal is triangular in shape superiorly and inferiorly the posterior wall is often incomplete from undeveloped laminae and spinous processes

- Contains 4 foramina on each side that transmit sacral nerves

Sacral Anatomy – Ligaments

- Anterior SI joint
 - Resists external rotation

- Posterior SI joint and interosseous SI ligament
 - Posterior tension band stabilization

- Iliolumbar ligaments
 - Augment posterior stability

- Sacrospinous ligament (anterior sacrum to ischial tuberosity)
 - Resists external rotation

- Sacrotuberous ligament (sacrum behind sacrospinous to ischial tuberosity)
 - Resists shear and flexion
Sacral Anatomy – Biomechanics

- Cadaveric studies unreliable
- Radiographic studies limited in utility
- Implanted tantalum spheres into bones of pelvis
 - Range of SI motion < 2°
- Rigid externally fixed devices
 - Range of SI motion < 1°
- No muscles act on the SI joint to produce active physiologic movements

Stress-relieving joint
- Transmits load via first sacral segment through iliac wings to acetabulum

Sacral Anatomy – Neurology

- L5 nerve root runs on top of sacral ala
- S1-4 nerve roots transmitted through the sacral foramina

- L5 nerve root
 - Dermatome – dorsal foot to great toe
 - Myotome – EHL, gluteus medius
 - Reflex – medial hamstring reflex
- S1 nerve root
 - Dermatome – lateral and plantar foot
 - Myotome – gastrocnemius, soleus
 - Reflex – Achilles’
- S2-5 nerve roots
 - Bowel and bladder function
 - Unilateral preservation normally adequate for control

Clinical Presentation

- History
- Physical Examination
- Diagnostic Tests

Plain radiographs
- Sensitivity ~30%
 - AP pelvis
 - Inlet view (40° caudad)
 - Outlet view (40° cephalad)
 - If not overt, then suspect based on symphysis widening or L5 TP fractures

CT scan
- Choice test for diagnosis

MRI scan
- Choice test for neurological deficits

Mechanism
- Motor vehicle accident
- Fall from height
- Repetitive stress

Symptoms
- Peripelvic pain
- Neurological deficits

Inspection
- Soft tissue trauma

Palpation
- Test pelvic ring stability
- Assess for SC fluid mass

Neurological examination
- Light touch – LE and sacral
- DRE + anal wink reflex
- Bulbocavernosus, cremasteric reflex

Vascular examination
- Distal pulses
Choice CT Planes to Assess Fracture

<table>
<thead>
<tr>
<th>Measurement</th>
<th>CT Image</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP Displacement</td>
<td>Axial</td>
</tr>
<tr>
<td>Vertical Translation</td>
<td>Coronal</td>
</tr>
<tr>
<td>AP Translation</td>
<td>Sagittal</td>
</tr>
<tr>
<td>Sagittal Angulation</td>
<td>Sagittal</td>
</tr>
<tr>
<td>Canal Occlusion</td>
<td>Axial</td>
</tr>
</tbody>
</table>

≥ 1 cm of displacement (either static or on loading) generally marker of pelvic instability

Conceptual Approach to Sacral Fractures

- Presence of active bleeding
- Presence of open fracture
- Neurological injury
- Pattern and stability of the skeletal injury
- Systemic injury load

Classification Schemes

- Denis classification
 - Denis Zone-I fractures
 - Denis Zone-II fractures
 - Denis Zone-III fractures
- Roy-Camille subclassification
 - Denis Zone-III fractures
- Complex sacral fractures
 - Denis Zone-III fractures
- Tile classification
 - Global pelvic stability
- Isler classification
 - Involvement of lumbosacral articulation
Denis Classification – Overview

• Retrospective review (1988): 11 years, 236 patients

• Medial fracture excursion was closely associated with mechanism of injury and neurological deficits

• Confirmed by Pohlemann (1992) with series of 377 patients, but neurological deficit more correlated with Tile classification of pelvic stability

Shortcoming – does not inform about mechanical stability

Denis Classification – Type I

• Location – fracture lateral to the sacral foramina

• Frequency – most common, 50%

• Neurological injury – infrequent, 6%, typically involves L5 nerve root

• Entrapment of L5 nerve root between the upwardly migrated fracture fragment and the L5 transverse process
 • Reduction of the sacral ala may promote L5 recovery

Denis Classification – Type II

• Location – fracture through the sacral foramina

• Frequency – second most common, 34%

• Neurological injury – common, 28%, frequently involves L5, S1, or S2 nerve roots

• Bladder dysfunction is rare
Denis Classification – Type III

- Location – fracture medial to the sacral foramina
- Frequency – least common, 16%
- Neurological injury – frequent, 57%, bowel, bladder, sexual function impairment in 76% of those with neurological injury
- Vertical – almost always associated with pelvic ring fracture
- Horizontal – significant displacement produces severe deficit

Roy Camille Subclassification – Denis Type III

- Injury severity, likelihood of neurological injury, and therapeutic implications directly related to increasingly severe types
- Type 1 – flexion deformity of the sacrum
- Type 2 – partially translated and hyperkyphotic
- Type 3 – completely translated and no fracture overlap
- Type 4 – segmental S1 comminution

Complex Sacral Fractures – Denis Type III

- H-type
- U-type
- Lambda-type
- T-type
Tile Classification of Pelvic Stability

<table>
<thead>
<tr>
<th>Tile</th>
<th>Fracture Type</th>
<th>Fracture Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Stable</td>
<td>Acute pelvic, sacral wing, pelvic ring, Underlay autolysis.</td>
</tr>
<tr>
<td>B</td>
<td>Rotational unstable, Vertically static</td>
<td>Upward pubic ramus with posterior acetabular view, Bucket handle.</td>
</tr>
<tr>
<td>C</td>
<td>Rotationally unstable, Vertically unstable</td>
<td>Bilateral pelvic, bilateral acetabular, or bilateral pelvic.</td>
</tr>
</tbody>
</table>

Isler Classification – Lumbosacral Articulation

- Isler 1 - fracture occurs lateral to the L5/S1 facet
- Isler 2 - fractures line involves the L5/S1 facet
- Isler 3 - fracture line extends medially to the L5/S1 facet

Question 1

- 37F with history of major depression

 History
 - Suicide attempt, jump from 3rd floor

 Physical
 - No open lacerations
 - Lower extremity power intact
 - Absent rectal tone
 - Patellar anesthesia
 - Urinary retention

 Classification
 - Pattern?
 - Neurology?
 - Stable or unstable?
Pelvic Ring Injuries

Purpose

• Mechanism of Injury
 – Pelvic
 – Sacrum
• Classification
• Treatment

Mechanism of Injury

• High energy trauma
• Multiple injuries
• Significant soft tissue injury
Bone Anatomy

- Paired ilia
- Sacrum
- No inherent stability

Biomechanical Function

Sacrum

- Keystone

Resist outward movement
Rest of pelvic ring

Biomechanical Function

Sacrum

- Inlet view
 - Reverse keystone
 - Sacrum displaced internally
Biomechanical Function
Sacrum

• Keystone
• Inlet view
 – Reverse keystone
 Sacrum displaced internally
• Outlet view
 – Keystone

Important Stabilizing Ligaments

• Illiolumbar (LS)
• Sacroiliac ligaments
 – Posterior
 – Anterior

• Sacrotuberous
• Sacrospinous
• Very strong
• Essential to pelvic stability
Important Stabilizing Ligaments

- Symphyseal
- Fibrocartilagenous joint
 - Disc
 - Reinforcing capsule

Internal Anatomy

- Lots of stuff!!!
- Don’t go there

Pelvic Ring Fracture

90% sacral fractures
Pelvic ring injuries
Mechanism of Injury

- Force direct to pelvis
 - Ilium
 - Pubis
 - Ischium
- Indirect forces
 - Hip / femur

Classification Pelvic Ring Injuries

- Morphology – Letournel
- Mechanism/ stability
 - Young-Burgess
 - Tile
- AO/ OTA
 - Very complicated

Young - Burgess

- Anteroposterior compression (APC)
- Lateral compression
- Shear
Anteroposterior Compression

- APC 1
 - Symphysis disruption
 - Posterior intact

APC 1
Tile JAAOS 1996

Anteroposterior Compression

- APC 1
 - Posterior intact
 - Symphysis disruption
- AP 2
 - Partial lig disruption

APC 2
Tile JAAOS 1996

Anteroposterior Compression

- APC 1
 - Posterior intact
 - Symphysis disruption
- APC 2
 - Partial lig disruption
- APC 3
 - Complete sacroiliac disruption

Tile JAAOS 1996
Lateral Compression

• LC 1
 – Sacral compression
 – Pubis overlapping

LC 1
Tile JAAOS 1996

Lateral Compression

• LC 1
 – Sacral compression
• LC 2
 – Iliac wing fracture

LC 2
Tile JAAOS 1996

Lateral Compression

• LC 1
 – Sacral compression
• LC 2
 – Iliac wing fracture
• LC 3
 – Windswept pelvis

LC 3
Tile JAAOS 1996
Vertical Shear

• Highly unstable
• Complete sacroiliac disruption
• High degree nerve injury
• L5-S1 disruption
 – Facets
 – Spondylolisthesis
• Multiple TP fx

Treatment of Pelvic Ring Fractures

Goals

• Reduce pelvis volume
• Correct hip malalignment
 – Leg length
 – Center of head displacement
• Stability
 – Load transfer
 – Sitting
 – Standing/walking

Indications

• Large topic
• Poor agreement
• Asc sacral fracture
 – Assess pelvic ring
 – Unstable
 – Consider stabilization
 • Pubis
 • Acetabulum (if fractured)
 • Posterior SI joint and sacrum
Temporary Stabilization

- Hemodynamic instability
- Reduce pelvic volume
- Correct pelvic displacement
- Stabilize to allow clotting

Anterior Techniques

- External fixation
 - Unfavorable
 - Infections
 - Poorly controls posterior
- Infix
 - Pedicle screws systems
 - Percutaneous

Anterior Techniques

- External fixation
 - Unfavorable
 - Infections
 - Poorly controls posterior
- Infix
 - Pedicle screws systems
 - Percutaneous
Anterior Techniques

- Internal Fixation
 - Pubic symphysis plating
 - Screws
 - Pelvic brim plating

Posterior Fixation

- Old techniques
 - Plate across posterior ilium
 - Trans-iliac rods
 - Anterior plate SI joint
- Iliac ORIF

Posterior Fixation

- Sacroiliac screws
- Iliolumbar fixation
Posterior Fixation

- Sacroiliac screws
- Iliolumbar fixation

Conclusion

- Pelvis ring injuries
- Component of sacral fractures
- Team approach
Indications

- Very little in the literature
- No Level 1 or 2 studies
- There are no clear guidelines
- Treatment usually done on case by case basis

Deciding Factors

- Pattern/Mechanism
- Energy
- Associated injuries
- Bone Quality
- Lever arms
Energy
- Stress fracture
- Low energy fall
- High energy
- As energy increases so does damage to soft tissue, displacement, neurologic injury and deformity
- As energy increases likelihood of surgery increases

Pattern/Mechanism
- What was the dominant force exerted in the injury?
- The human spine does not tolerate shear well
 - If the fracture occurred as a result of shear forces or if unstable in shear then risk of progression
- Is this a Pelvic fracture or a distal spinal fracture?
 - Look for associated fractures in the pelvic ring
- U or H-type fractures with
 - >1 cm displacement
 - >20(?) degrees angulation

Associated injuries
- Will surgical treatment of the sacral fracture assist the recovery of the associated injuries?
- Will treatment of the associated injuries affect the healing of the sacral injury? (i.e. protected weight bearing)
Bone Quality

- Osteoporotic sacral fractures often low energy and have less associated soft tissue injury
- Risk of fixation failure higher
- Tends towards non-operative treatment

Lever Arms

- Sacral fractures often occur below lumbar fusions
- The longer the adjacent level the higher the risk of further displacement
- Sacral kyphosis leads to loss of sagittal balance which increases deforming forces

Algorithm for Treatment
Case #1

- 54yo male
- Hi speed MVC
- Mulit extremity injuries
- Head bleed
- Pelvic ring with sacrum
- ? Neuro

MetroHealth Department of Neurosciences
Case #2

- 19yo female
- Car vs pedestrian
- Isolated injury
- Searing R le pain
- 0/5 plantar flexion R
Case #2

- 42yo male
- Hi speed MVC
- Multiple injuries
- Neuro intact
What is the most important anatomic landmark to see when inserting iliac bolts?

- Superior end plate of S1
- Superimposed sciatic notches
- Femoral heads
- PSIS starting point
- Teardrop